Bayesian shrinkage methods for partially observed data with many predictors
نویسندگان
چکیده
منابع مشابه
Bayesian Shrinkage Methods for Partially Observed Data with Many Predictors.
Motivated by the increasing use of and rapid changes in array technologies, we consider the prediction problem of fitting a linear regression relating a continuous outcome Y to a large number of covariates X , eg measurements from current, state-of-the-art technology. For most of the samples, only the outcome Y and surrogate covariates, W , are available. These surrogates may be data from prior...
متن کاملGeneralized Shrinkage Methods for Forecasting Using Many Predictors
This article provides a simple shrinkage representation that describes the operational characteristics of various forecasting methods designed for a large number of orthogonal predictors (such as principal components). These methods include pretest methods, Bayesian model averaging, empirical Bayes, and bagging. We compare empirically forecasts from these methods with dynamic factor model (DFM)...
متن کاملHierarchical Shrinkage Priors for Dynamic Regressions With Many Predictors
This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation. Using 129 U.S. macroeconomic quarterly variables for the period 1959 – 2010 I exhaustively evaluate the ...
متن کاملEvidence Estimation for Bayesian Partially Observed MRFs
Bayesian estimation in Markov random fields is very hard due to the intractability of the partition function. The introduction of hidden units makes the situation even worse due to the presence of potentially very many modes in the posterior distribution. For the first time we propose a comprehensive procedure to address one of the Bayesian estimation problems, approximating the evidence of par...
متن کاملVariational Bayesian Inference for Partially Observed Diffusions
In this paper the variational Bayesian approximation for partially observed continuous time stochastic processes is studied. We derive an EM-like algorithm and give its implementations. The variational Expectation step is explicitly solved using the method of conditional moment generating functions and stochastic partial differential equations. The numerical experiments demonstrate that the var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2013
ISSN: 1932-6157
DOI: 10.1214/13-aoas668